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This paper gives classi®cation results for crystallographic groups in dimensions

up to 6 which re®ne earlier enumeration results. Based on the classi®cation data,

the asymptotic growth of the number of space-group types is discussed. The

classi®cation scheme for crystallographic groups is revisited and a new

classi®cation level in between that of geometric and arithmetic crystal classes

is introduced and denoted as harmonic crystal classes. Enantiomorphic pairs are

determined on all classi®cation levels from space-group types to crystal families

and the enantiomorphic pairs of ®xed-point-free space groups are given. A

general algorithm to compute enantiomorphic pairs is described.

1. Introduction

The classi®cation of crystallographic groups in dimensions

beyond 3 has been motivated from many sources, ranging

from incommensurate crystal phases and quasicrystals over

snow crystals to biomacromolecules. An excellent overview of

the different application areas is given by Janner (2001).

For the groups of four-dimensional space, information on

the single groups has been tabulated in the book by Brown et

al. (1978), but in comparison with International Tables for

Crystallography (Hahn, 2002) the information is already

heavily compressed. The rapid growth of the number of

groups for increasing dimensions makes it obvious that for

dimensions � 5 an approach listing all the groups is not

feasible. A new philosophy for dealing with crystallographic

groups in higher dimensions was suggested by Opgenorth et al.

(1998), namely the combination of a set of algorithms with a

database containing crucial data from which further infor-

mation can easily be computed. A system realizing this

approach is the CARAT computer package described by

Plesken et al. (1998), which is freely available at http://

wwwb.math.rwth-aachen.de/carat/.

The power of a system like CARAT has been demonstrated

by enumerating the crystallographic groups in dimensions 5

and 6 (Plesken & Schulz, 2000), as well as determining the

®xed-point-free space groups in these dimensions (Cid &

Schulz, 2001). The main advantage, however, lies in the

capability to compute speci®c information without having to

go through an enormous classi®cation task. For example, for

an interesting point group one is able to enumerate the space-

group types in its geometric crystal class even if a full classi-

®cation in the respective dimension is out of the question.

In the current paper, the results of Plesken & Schulz (2000)

and Cid & Schulz (2001) are supplemented by determining

enantiomorphic pairs on the different classi®cation levels. An

enantiomorphic pair is a pair of objects that are equivalent by

an af®ne but not by an orientation-preserving transformation

of the underlying Euclidean space. For example, two groups

forming an enantiomorphic pair of space groups are

isomorphic but have opposite handedness. The orbit of a point

under one group is the mirror image of the orbit under the

other group.

The paper is organized as follows: in x2 the terminology to

describe the different classi®cation levels is ®xed (including

the de®nition of a new level) and the notion of enantio-

morphism is discussed in detail. x3 describes an algorithm to

determine enantiomorphic pairs on the different classi®cation

levels. It also gives an example illustrating that geometric

crystal classes in which all arithmetic crystal classes are

enantiomorphic are not necessarily enantiomorphic them-

selves. The results obtained in dimensions 5 and 6 are

presented in x4, together with a brief review of results in lower

dimensions. As a byproduct of the classi®cation, the smallest

examples of crystal systems not containing a holohedry are

presented. A short discussion on the asymptotic number of

space-group types in higher dimensions concludes the paper.

2. Terminology and definitions

In this section, we will ®x the terminology used throughout

this paper, closely following the de®nitions of Opgenorth et al.

(1998) and of Janssen et al. (1999, 2002).

2.1. Basic terminology

After ®xing an origin and a basis of the lattice of translation

vectors, the action of a crystallographic space group on the

underlying Euclidean space is given by

R�P; v� :� fg j v�g� � tg :� g v�g� � t

0 1

� �
j g 2 P; t 2 Zn

� �



� GL�n� 1;R�, where P � GL�n;Z� is a ®nite integral

matrix group and v is a vector system. This means that v is a

map v : P! Rn with v�gh� � v�g� � g � v�h� �modZn� for all

g; h 2 P. The group P is called the point group of R�P; v�, the

matrix g is called the linear part of fg j v�g� � tg. We will

always identify the translation group of a crystallographic

space group with the corresponding lattice of translation

vectors in the Euclidean space.

For a (metrical) lattice L with basis �a1; . . . ; an�, the inner

product on L is represented by the metric tensor F giving the

inner products of the basis vectors, i.e. Fij � �ai; aj�. If the

point group is desired to consist of orthogonal matrices, the

basis has to be chosen such that the metric tensor is the

identity matrix. The base change from the lattice basis to an

orthonormal basis then provides the link between integral

matrices and orthogonal matrices for the point group.

For a set F � Rn�n
sym of metric tensors, the group

B�F� :� fg 2 GL�n;Z� j gTFg � F for all F 2 Fg
is called the Bravais group of F . Vice versa, for an integral

matrix group G � GL�n;Z�, the set

F�G� :� fF 2 Rn�n
sym j gTFg � F for all g 2 Gg

is seen to be an R-vector space and is called the space of

invariant tensors of G. The positive de®nite tensors in F�G�
represent the different metrics of lattices which are invariant

under the action of G.

Finally, we combine the last two constructions and de®ne

for an integral matrix group G the Bravais group of G as

B�G� :� B�F�G��:
This is the group of common isometries of all the metric

tensors left invariant by G. A group G � GL�n;Z� is simply

called a Bravais group if G � B�G�.

2.2. The hierarchy of classification

We brie¯y recall the de®nitions for the various classi®cation

levels for crystallographic groups as given by Brown et al.

(1978), NeubuÈ ser et al. (1981) and Janssen et al. (2002).

2.2.1. Space-group type. Crystallographic space groups are

said to have the same space-group type if they are conjugate

subgroups of the af®ne group. The Bieberbach theorems

(Bieberbach, 1911) show that this is equivalent with the

groups being isomorphic.

By a result of Zassenhaus (1948), two space groups R�P; v�
and R�P; v0� with the same point group P belong to the same

space-group type if and only if the vector systems v and v0

represent elements of the ®rst cohomology group

H1�P;Rn=Zn�, which lie in the same orbit under the action of

the normalizer NGL�n;Z��P� of P in GL�n;Z�.
2.2.2. Arithmetic crystal class. Two ®nite integral matrix

groups belong to the same arithmetic crystal class if they

are conjugate subgroups of GL�n;Z�, i.e. the class of

G � GL�n;Z� is the orbit of G under GL�n;Z�. In terms of

space group, this means that two groups in the same class

represent the action of the point group of a space group with

respect to different lattice bases of the lattice of translation

vectors.

2.2.3. Geometric crystal class. Two ®nite rational matrix

groups are said to lie in the same geometric crystal class if they

are conjugate subgroups of GL�n;Q�, i.e. the class of

G � GL�n;Q� is the orbit of G under GL�n;Q�. In terms of

space groups, this means that two groups in the same

geometric crystal class represent the action of the point group

of a space group with respect to different bases of the rational

vector space spanned by the lattice of translation vectors. This

classi®cation level re¯ects the anisotropy of the macroscopic

crystal structure in Euclidean space and is traditionally just

called crystal class.

For the sake of brevity, we will omit the word crystal from

the terms arithmetic/geometric crystal class throughout this

paper.
2.2.4. Holohedry. For a lattice L with metric tensor F, the

group of orthogonal transformations leaving L invariant is

called the holohedry of L. Since with respect to a lattice basis

of L all elements of the holohedry are represented by integral

matrices, the holohedry of L can be identi®ed with the Bravais

group B�F�, which is also called the arithmetic holohedry of L.

The geometric class of a group G is called a holohedry if G is

the holohedry of one of its invariant lattices.

2.2.5. Bravais flock. For a Bravais group B, the set of all

integral matrix groups G with B�G� lying in the arithmetic

class of B is called the Bravais ¯ock of B. Crystallographic

point groups in the same Bravais ¯ock are said to be Bravais

equivalent, their invariant lattices lie in the same Bravais class.

Note that traditionally Bravais ¯ocks are used to classify space

groups (cf. Hahn, 2002), but the notion used here is equiva-

lent, since all space groups with the same point group lie in

one Bravais ¯ock.

2.2.6. Bravais system. The union of Bravais ¯ocks that have

GL�n;Q�-conjugate Bravais groups is called a Bravais system.

Clearly, the geometric class containing these Bravais groups is

a holohedry and it is by de®nition the only holohedry in this

Bravais system. Thus, there is a one-to-one correspondence

between Bravais systems and holohedries. From the perspec-

tive of lattices, this de®nition means that two lattices belong to

the same lattice system if their holohedries lie in the same

Bravais system.

It is proved in x4 of NeubuÈ ser et al. (1981) that this de®ni-

tion of Bravais systems is equivalent with the alternative

de®nition: A Bravais system is the union of all Bravais ¯ocks

intersecting the same set of geometric classes. Here, a Bravais

¯ock is said to intersect a geometric class if there exists a

matrix group that belongs both to the Bravais ¯ock and to the

geometric class. One therefore lists all the geometric classes

for which representatives are found in a Bravais ¯ock and

joins those Bravais ¯ocks into a Bravais system for which these

lists coincide.

2.2.7. Crystal system. In analogy with the alternative de®-

nition of Bravais systems, the unions of all geometric classes

intersecting the same set of Bravais ¯ocks is de®ned to be a

crystal system or point-group system. Amending the somewhat

misleading De®nition 14 of Janssen et al. (2002), this means
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that two geometric classes belong to the same crystal system if

for any representative of the ®rst class there is a representative

of the other class such that the representatives have GL�n;Q�-
conjugate Bravais groups. NeubuÈ ser et al. (1981) show that a

crystal system contains at most one holohedry and they give a

(counter-)example in dimension 7 that illustrates that it does

not necessarily contain one. Therefore, the number of crystal

systems is greater than or equal to the number of Bravais

systems.

The smallest examples for crystal systems not containing a

holohedry are found in dimension 5 and in x4.3 one of them is

discussed in detail. The de®nition for crystal systems as given

by Brown et al. (1978) therefore is only valid in dimensions up

to 4, where it coincides with the more general de®nition

adopted here.

2.2.8. Crystal family. A crystal family is de®ned to be the

smallest set of matrix groups that consists of full geometric

classes and of full Bravais ¯ocks. Since a Bravais system is the

union of Bravais ¯ocks intersecting the same set of geometric

classes and a crystal system is the union of geometric classes

intersecting the same set of Bravais ¯ocks, the equivalence

relation given by the classi®cation into crystal families is the

®nest equivalence relation coarser than both the classi®cation

into crystal systems and into Bravais systems.

The dependencies between the different levels of classi®-

cation are shown in Fig. 1. If two levels are connected by an

edge, classes of the higher level consist of full classes of the

lower level. The notion of a harmonic crystal class is explained

below.

2.3. Harmonic crystal class

Even without considering the signi®cance of the classi®ca-

tion levels, reasons of symmetry in the classi®cation scheme

suggest the introduction of a new classi®cation level, namely

the intersection of geometric crystal classes with Bravais ¯ocks

and we call this a harmonic crystal class. In analogy with the

crystal families being the ®nest equivalence classes coarser

than both the crystal systems and the Bravais systems, this is

the coarsest equivalence relation re®ning both the geometric

crystal classes and the Bravais ¯ocks. The name of this clas-

si®cation level is chosen to indicate that groups which are

equivalent on this level are in a harmonic relation: if G is a

representative with invariant lattice L, then all other groups in

the harmonic crystal class of G are obtained as the action of G

on sublattices of L that are isometric with L.

Besides completing the classi®cation scheme with respect to

unions and intersections, the signi®cance of this new classi®-

cation level is twofold: Arithmetic classes in a harmonic crystal

class correspond to actions on isometric sublattices and thus

indicate self-similar structures in a lattice which are not

obtained by integral scalings. Such a type of self-similarity is

an important feature in the description of the symmetry of

an object. Secondly, the classi®cation into harmonic crystal

classes is almost as ®ne as that into arithmetic classes, but is

computationally easier.

We will now describe properties of this new type of classi-

®cation for crystallographic groups in more detail.

A harmonic crystal class is the intersection of a geometric

class and a Bravais ¯ock. Since two point groups G and H in

one harmonic crystal class have Bravais groups that are

conjugate subgroups of GL�n;Z�, we can assume that

B�G� � B�H� and therefore the spaces of invariant metric

tensors F�G� and F�H� coincide. On the other hand, the

groups lie in the same geometric class, hence there exists

y 2 GL�n;Q� with H � yÿ1Gy. Since in general we have

F�yÿ1Gy� � yTF�G�y, we can therefore conclude that

yTF�G�y � F�H� � F�G�, i.e. y acts on the space of invariant

tensors.

There are different ways in which two groups in the same

harmonic crystal class can be related algebraically. They are

distinguished by the way in which the matrix y conjugating G

to H transforms the Bravais group B�G�.
(1) In the simplest case, yÿ1B�G�y � B�G�, which means

that y 2 NGL�n;Q��B�G��. In other words, the subgroups G and

H of B�G� are interchanged by an automorphism of B�G�,
which can be realized as a rational matrix.

(2) A slightly more complicated situation occurs when

yÿ1B�G�y 6� B�G� but the group hyÿ1B�G�y;B�G�i generated

by yÿ1B�G�y and B�G� is still a ®nite group. By a suitable basis

transformation, this group can be made an integral matrix

group and therefore y is seen to lie in the rational normalizer

of a conjugate of a larger Bravais group in the same crystal

family.

(3) Finally, the group hyÿ1B�G�y;B�G�i may happen to be

an in®nite group. This is for example the case if G and H are

subgroups of a ®nite group B such that an automorphism � of

B maps G to H, but � is not induced by a rational matrix.

These three cases are illustrated in the following examples.

Examples:

(1) In dimension 2, there is only one harmonic crystal class

that consists of more than one arithmetic class. The hexagonal

crystal family contains two arithmetic classes of groups

isomorphic to the dihedral group D3 of order 6. The groups

representing these classes are the symmetry groups of an

equilateral triangle and are generated by a rotation by 2�=3
Figure 1
Hierarchy of classi®cation.



and a re¯ection. They are distinguished by the orientation of

the invariant triangle with respect to the underlying hexagonal

lattice as displayed in Fig. 2.

The ®rst group, corresponding to the action on the solid

triangle in Fig. 2, represents the arithmetic class with modi®ed

Hermann±Mauguin symbol 3m1p [following the notation

recommended by de Wolff et al. (1985)] and is given by

G :� 0 ÿ1

1 ÿ1

� �
;

0 ÿ1

ÿ1 0

� �� �
;

the second group, corresponding to the action on the dashed

triangle in Fig. 2, represents the arithmetic class 31mp and is

given by

H :� 0 ÿ1

1 ÿ1

� �
;

0 1

1 0

� �� �
:

The space of invariant tensors of both groups consists of the

scalar multiples of

F :� 2 ÿ1

ÿ1 2

� �
and their Bravais group is isomorphic to the dihedral group D6

of order 12 and belongs to the arithmetic class 6mmp.

A matrix conjugating the ®rst group to the second is

y :� 1 ÿ2

ÿ1 ÿ1

� �
;

thus G and H belong to the same harmonic crystal class. We

have y 2 NGL�2;Q��B�G�� and y induces the automorphism of

D6 which interchanges its two subgroups isomorphic to D3.

In dimension 3, there are seven pairs of arithmetic classes

that fall into one harmonic crystal class. Using again the

modi®ed Hermann±Mauguin symbol for arithmetic classes,

these are: mm2Cÿmm2A, �42mPÿ �4m2P, �4m2Iÿ �42mI,

312Pÿ321P, 3m1Pÿ31mP, �31mPÿ�3m1P and �6m2Pÿ �62mP. In

all cases, the groups of each pair are conjugate by an element

in the rational normalizer of the corresponding Bravais

groups.

(2) Let L1 be the four-dimensional lattice Z4 with metric

tensor the four-dimensional identity matrix, i.e. a four-

dimensional hypercubic lattice with Bravais type XXIII=I in

the notation of Brown et al. (1978). The lattice L2 generated by

the columns of the matrix

y :� 1
2

1 1 1 1

1 1 ÿ1 ÿ1

1 ÿ1 1 ÿ1

1 ÿ1 ÿ1 1

0BB@
1CCA

is also a hypercubic lattice and is isometric with L1. The group

G1 of orthogonal transformations of L1 is the group of all

matrices that have in each row and column precisely one entry

unequal to 0 (which therefore has to be 1 or ÿ1) and is called

the full monomial group in GL�4;Z�. This group is isomorphic

to the semidirect product C4
2 �j S4 of order 384 and represents

the arithmetic class 32=21=01 of Brown et al. (1978). If we

transform G1 to the lattice L2, we obtain a non-integral matrix

group G2 :� yÿ1G1y, thus we see that y 62 NGL�4;Q��G1�. The

intersection H of G1 and G2 is an integral matrix group of

order 192, representing the arithmetic class 32=19=01. We

now observe that, up to conjugacy in G1, H has four subgroups

of order 32 having the same space of invariant tensors as G1,

which we denote by U1, U2, U3 and U4 and which represent

the arithmetic classes 32=09=01, 32=09=01, 32=09=02 and

32=10=01, respectively. Conjugation with y interchanges U1

and U3 and ®xes U2 and U4, therefore the groups U1 and U3

(and thus their arithmetic classes) lie in the same harmonic

crystal class.

Finally, one sees that both G1 and G2 act on the hypercubic

lattice

L :� L1 � L2 � ha1; a2; a3;
1
2 �a1 � a2 � a3 � a4�i;

which has Bravais type XXIII=II and is isometric with the

root lattice F4 (up to a scaling by 21=2). The group

B :� hG1; yÿ1G1yi turns out to be the full automorphism

group of order 1152 of this lattice L and represents the

arithmetic class 33=16=01. It is therefore conjugate to a

Bravais group in the same crystal family but not in the same

crystal system as G1. The fact that y2 � 1 shows that y is

contained in the rational normalizer NGL�4;Q��B� of B.

(3) Let L be the icosahedral lattice with metric tensor

F :�
4 ÿ1 ÿ1 ÿ1

ÿ1 4 ÿ1 ÿ1

ÿ1 ÿ1 4 ÿ1

ÿ1 ÿ1 ÿ1 4

0BB@
1CCA;

which has Bravais type XXII=I. The Bravais group B :� B�F�
represents the arithmetic class 31=07=01 and is isomorphic to

the group S5 � C2 of order 240. Up to conjugacy in B, B has

two subgroups G1;G2 of order 20, which lie in the Bravais

¯ock of B. These groups are isomorphic to the semidirect

product C5 �j C4 and represent the arithmetic classes

31=01=01 and 31=01=02, respectively. The groups G1 and G2

are given by
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G1 �

ÿ1 0 1 0

ÿ1 0 0 1

ÿ1 1 0 0

ÿ1 0 0 0

0BBB@
1CCCA;

0 0 ÿ1 0

ÿ1 0 0 0

0 0 0 ÿ1

0 ÿ1 0 0

0BBB@
1CCCA

* +

G2 �

ÿ1 0 1 0

ÿ1 0 0 1

ÿ1 1 0 0

ÿ1 0 0 0

0BBB@
1CCCA;

0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

0BBB@
1CCCA

* +
:

The inner automorphisms of B form a subgroup of index 2 in

the full group of automorphisms of B and an outer auto-

morphism interchanges G1 and G2 (mapping the two gener-

ating sets given onto each other). It can be checked that this

outer automorphism is not induced by conjugation with an

element from GL�4;Q�, hence the groups are not conjugate

under the rational normalizer NGL�4;Q��B� of B.

On the other hand, G2 is Z-equivalent to the action of G1 on

the unique G1-invariant sublattice of L of index 52, which has

transformation matrix

y :�
1 0 ÿ2 2

2 ÿ1 ÿ2 0

0 ÿ2 ÿ1 2

2 ÿ2 0 1

0BB@
1CCA;

therefore y conjugates G1 to a group in the arithmetic class of

G2. Thus, G1 and G2 lie in the same geometric class and hence

also in the same harmonic crystal class.

In this example, we can already conclude that hB; yÿ1Byi is

an in®nite group, since there exists no larger Bravais group in

this crystal family and thus case (2) cannot occur. But the fact

that G1 and G2 are not conjugate by an element from the

normalizer of a larger group can also be concluded by looking

at the B-invariant sublattices of L: Since yÿ1L is invariant

under yÿ1By and y has determinant 52, it is suf®cient to look at

sublattices of L with index a power of 5. The lattices invariant

under B are of the form 5mL or 5mL0 for some m 2 Z, where

L0 � L is a B-invariant sublattice of index 5 in L. Thus, the

B-invariant sublattices of L are of index 54m or 54m�1 in L.

Analogously, the lattices invariant under yÿ1By are of the

form yÿ1 � 5mL or yÿ1 � 5mL0. This shows that the sublattices of

L invariant under yÿ1By have index 54m�2 or 54m�3 in L. Thus,

there is no lattice on which both B and yÿ1By act and hence

the group hB; yÿ1Byi generated by B and yÿ1By has to be an

in®nite group. In particular, the two groups cannot be conju-

gate by an element of the normalizer of any ®nite group they

are contained in.

2.4. Fixed-point-free space groups

A crystallographic space group is called ®xed-point-free if

all group elements except the identity element leave no point

of the underlying Euclidean space ®xed. These are precisely

the torsion-free space groups, since every element of ®nite

order has ®xed points: An element g of order n ®xes the point

w :� g � v� g2 � v� . . .� gn � v;

where v is an arbitrary point of the Euclidean space.

The ®xed-point-free space groups are also called Bieber-

bach groups and play an important role in the classi®cation of

¯at Riemannian manifolds (see Charlap, 1986). Of particular

interest are Bieberbach groups with trivial center which

correspond to manifolds with ®rst Betti number 0.

The n-dimensional ®xed-point-free space groups for

n � 1; 2; 3; 4 are given in Brown et al. (1978) while Cid &

Schulz (2001) list their numbers for dimensions 5 and 6 and

describe a generic algorithm for arbitrary dimensions.

3. Enantiomorphism

The notion of enantiomorphism reveals a subtle difference in

how crystallographic objects may be classi®ed. Owing to the

Bieberbach theorems, which state that abstract isomorphism

of space groups is the same as equivalence under af®ne

transformations, it is natural to regard objects as equivalent if

they can be transformed into each other by an af®ne trans-

formation. On the other hand, crystallography deals with

objects in physical space and in some experimental situations

the handedness plays a role. In this case, the orientation has to

be respected by a symmetry operation (excluding for example

re¯ections in three-dimensional space), which leads to the

following re®ned classi®cation scheme allowing only orienta-

tion-preserving af®ne transformations:

Two objects that are equivalent by an af®ne transformation

but not by an orientation-preserving transformation are called

an enantiomorphic pair, each member of an enantiomorphic

pair is said to be enantiomorphic.

This general de®nition covers enantiomorphism of crystal

structures with equivalence de®ned by the space-group types

as well as enantiomorphism of point groups where equivalence

is given by conjugacy.

A word of warning may be relevant at this point: While in

three-dimensional space the relevance of enantiomorphism to

describe handedness is clear, this is no longer true for higher-

dimensional descriptions of objects like quasicrystals or

incommensurately modulated crystals. The question is how

transformations between objects in higher-dimensional space

are related to the projections of these objects into three-

dimensional space. For example, a ®vefold screw in three-

dimensional space is clearly enantiomorphic, but its ®ve-

dimensional description by integral matrices is found not to be

enantiomorphic in the sense of the above de®nition. However,

if enantiomorphism is found in higher dimensions, this indi-

cates handedness for the projected objects as well. Thus, the

mathematical notion adopted here may serve as a starting

point for a better understanding of the handedness of objects

with higher-dimensional descriptions.

Enantiomorphism can be de®ned on all levels of classi®-

cation for crystallographic groups. In order to distinguish the

equivalence classes under orientation-preserving transforma-

tions from those under arbitrary af®ne transformations, we

will call the former proper classes.



For the space-group types, the arithmetic classes and the

geometric classes, a common approach can be chosen to

determine the enantiomorphic pairs.

3.1. Enantiomorphism of space-group types, arithmetic and
geometric crystal classes

We assume that an equivalence class is given as the orbit of

a member H of the class under a group G of transformations

(as is the case for the space-group types, arithmetic classes and

geometric classes). We denote the orbit of an element H under

a group G by HG. If G contains a transformation r that does not

preserve orientation, we can split G into the disjoint union of

the two cosets with respect to the subgroup G� of orientation-

preserving transformations:

G � G� _[ r � G�:

The group H and its orientation-reversed transform

H 0 :� rÿ1Hr form an enantiomorphic pair if and only if H 0 is

not contained in the orbit HG
�

of H under G�. We arrive at the

following criterion:

A group H is enantiomorphic if and only if the stabilizer

StabG�H� of H in G is contained in G�.

This criterion is deduced as follows: assume that H and its

transform H0 do not form an enantiomorphic pair, then

H 0 2 HG
�

and thus there exists g0 2 G� such that

gÿ1
0 Hg0 � H 0 � rÿ1Hr. This shows that r � gÿ1

0 2 StabG�H� and

since r � gÿ1
0 62 G�, we have StabG�H� 6� G�. On the other hand,

if StabG�H� 6� G�, there exists g1 2 StabG�H� with g1 62 G�. We

then have g1 � r 2 G� and �g1 � r�ÿ1H�g1 � r� � rÿ1�gÿ1
1 Hg1�r �

rÿ1Hr � H 0, thus H 0 2 HG
�
.

Since G� is a subgroup of index 2 in G, conjugation by

elements of G ®xes G� and therefore conjugates of subgroups

of G� lie in G�. By our assumption, every group H1 in the

equivalence class of H is of the form H1 � gÿ1Hg for some

g 2 G, hence the stabilizer StabG�H1� of H1 in G is

StabG�H1� � gÿ1StabG�H�g. We therefore conclude that either

none or all the groups in the class of H are enantiomorphic

and in the latter case we call the equivalence class itself

enantiomorphic.

3.1.1. Space-group types. The equivalence class of a crys-

tallographic space group R is the orbit of R under the af®ne

group A�n;R� and the orientation-preserving af®ne transfor-

mations are those for which the linear part has determinant

>0. For a space group R � R�P; v� with point group

P � GL�n;Z�, the point group of its stabilizer in A�n;R� lies

in the normalizer N :� NGL�n;Z��P� of P in GL�n;Z�. Clearly, R

is enantiomorphic if all elements of N have positive determi-

nant, i.e. if N � SL�n;Z� :� fg 2 GL�n;Z� j det�g� � 1g. But

not every element of N is necessarily the linear part of a

stabilizer element, hence the class of R may also be enantio-

morphic in case N 6� SL�n;Z�. This is the case if the orbit

under N of the vector system v of R splits into two orbits under

N� :� N \ SL�n;Z�, since this implies that the point group of

the stabilizer StabA�n;R��R� of R is contained in N�.

3.1.2. Arithmetic crystal classes. The arithmetic class of an

integral matrix group G is the orbit of G under GL�n;Z�, the

orientation-preserving part of GL�n;Z� is SL�n;Z� and the

stabilizer of G under the action of GL�n;Z� is the normalizer

NGL�n;Z��G� of G in GL�n;Z�. Hence, the arithmetic class of G

is enantiomorphic if and only if the normalizer NGL�n;Z��G� is

contained in SL�n;Z�.
Note that enantiomorphism of arithmetic classes can only

occur in even dimensions, since ÿIn, the negative of the

identity matrix, is contained in the normalizer of every matrix

group and has determinant ÿ1 in odd dimensions. As a

consequence, enantiomorphism on classi®cation levels coarser

than that of arithmetic classes can also only occur in even

dimensions.

3.1.3. Geometric crystal classes. In analogy with the case of

arithmetic classes, the geometric class of an integral matrix

group G is enantiomorphic if and only if the normalizer

NGL�n;Q��G� of G in GL�n;Q� is contained in GL��n;Q� :�
fg 2 GL�n;Q� j det�g�> 0g.

3.2. Enantiomorphism on other levels

Following Brown et al. (1978), we call a Bravais ¯ock and a

Bravais system enantiomorphic if all the arithmetic classes

contained in them are enantiomorphic. Note that a Bravais

¯ock is enantiomorphic if and only if the Bravais group

contained in it is enantiomorphic, since the integral normalizer

NGL�n;Z��G� of a group G is contained in the normalizer

NGL�n;Z��B�G�� of its Bravais group. Thus, enantiomorphism of

a Bravais group implies enantiomorphism of all arithmetic

classes contained in its Bravais ¯ock. Consequently, a Bravais

system is enantiomorphic if and only if all Bravais groups

contained in it are enantiomorphic.

Analogously, we de®ne a harmonic crystal class to be

enantiomorphic if all the arithmetic classes contained in it are

enantiomorphic.

We would like to note that for the de®nition of enantio-

morphism for crystal systems and crystal families one has to

make a choice. One could either de®ne them as enantio-

morphic if all the arithmetic classes contained in them are

enantiomorphic, or if all the geometric classes contained in

them are enantiomorphic. Brown et al. (1978) remark (p. 15)

that in dimension 4 it turns out that all the geometric classes in

which all arithmetic classes are enantiomorphic are enantio-

morphic themselves but that it is not known whether this is

true in general. We will give a six-dimensional counterexample

in x3.4, where a geometric class that is not enantiomorphic

splits into three arithmetic classes that are enantiomorphic.

In view of the hierarchy of classi®cation levels, it seems

reasonable that enantiomorphism on a higher level should

imply enantiomorphism on a ®ner level. We therefore suggest

that crystal systems and crystal families be de®ned as enan-

tiomorphic if all the geometric classes contained in them are

enantiomorphic. Although this choice does not agree with

the choice made in Brown et al. (1978), it does not lead to

contradicting classi®cation results in dimensions � 6, since it

turns out (cf. Tables 1 and 2) that the only dimension in which

enantiomorphic crystal systems or families occur is dimension

4, and there the two de®nitions coincide (as noted before).
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3.3. Algorithm to determine enantiomorphic pairs

In this section, we give an outline of an algorithm by which

enantiomorphic pairs of crystallographic space groups, inte-

gral and rational matrix groups are determined. Enantio-

morphism on the other classi®cation levels is derived from

these.

The algorithm uses the following simple observations:

(i) All arithmetic classes in an enantiomorphic geometric

class are enantiomorphic, since NGL�n;Z��G� � NGL�n;Q��G� \
GL�n;Z�.

(ii) An arithmetic class is enantiomorphic if and only if the

corresponding symmorphic space-group type is enantio-

morphic because, for a symmorphic crystallographic space

group R0 � R�P; v0�, the point group of the stabilizer

StabA�n;R��R0� coincides with the integral normalizer

NGL�n;Z��P� of its point group P. In this case, any crystal-

lographic space group R (i.e. not only the symmorphic ones)

with point group in the arithmetic class of P is enantio-

morphic, since the point group of the stabilizer StabA�n;R��R� is
contained in the normalizer NGL�n;Z��P�, which in turn is

contained in SL�n;Z�.
(iii) If an integral matrix group G contains an element g of

determinant ÿ1, the geometric class of G, the arithmetic class

of G and all space-group types with point groups in the

geometric class of G are not enantiomorphic, since g is

contained in the rational and integral normalizers of G and

since a space-group element with linear part g is a non-

orientation-preserving element in the stabilizer of the space

group.

The algorithm proceeds in four steps:

(1) For representatives G of each geometric class, check

whether G � SL�n;Q�. If so, compute representatives

G1; . . . ;Gm for the arithmetic classes in the geometric class of

G. Otherwise, G contains an element of determinant ÿ1 and

therefore this geometric class, all arithmetic classes therein

and all space-group types with point group therein are not

enantiomorphic.

(2) For representatives G � SL�n;Z� of the arithmetic

classes obtained in step (1) compute the normalizer

N :� NGL�n;Z��G�. If N � SL�n;Z�, then the arithmetic

class of G and all space-group types with point groups in

this class are enantiomorphic. Otherwise, the symmorphic

space group with this point group is not enantiomorphic

but non-symmorphic space groups may be. In that case,

compute the vector systems V�G;Qn=Zn� for G and the

orientation-preserving part N� :� N \ SL�n;Z� of the

normalizer.

(3) For a group G with normalizer N and vector systems

V�G;Qn=Zn� obtained in step (2), compute the orbits of N and

N� on V�G;Qn=Zn�, respectively. If an orbit o under the

action of N splits into two orbits o� and oÿ under the action of

N�, then the space groups R�G; v�� and R�G; vÿ� with vector

systems v� and vÿ lying in o� and oÿ, respectively, form an

enantiomorphic pair. Otherwise, if an orbit o is the same under

N and N�, the space groups with vector system in o are not

enantiomorphic.

(4) For geometric classes in which all arithmetic classes are

enantiomorphic, compute the rational normalizer NGL�n;Q��G�
for a representative G. If NGL�n;Q��G� � GL��n;Q� then the

geometric class is enantiomorphic, otherwise it is not.

The rational normalizer NGL�n;Q��G� of a group

G � GL�n;Z� is computed in two stages: First the rational

centralizer

CGL�n;Q��G� :� fc 2 GL�n;Q� j cg � gc for all g 2 Gg
of G in GL�n;Q� is determined and is checked for being

contained in GL��n;Q�. In the second stage, additional

normalizer elements are computed that form a set of coset

representatives of hCGL�n;Q��G�;NGL�n;Z��G�i in NGL�n;Q��G�.
One possibility to ®nd such a set of elements is to inspect the

action of G on the G-invariant sublattices of Zn. Suppose that

y1 and y2 are basis transformations such that L1 � y1 � Zn and

L2 � y2 � Zn are G-invariant sublattices of Zn and such that

the actions of G on L1 and L2 are Z-equivalent. Then there

exists x 2 GL�n;Z� with xÿ1�yÿ1
1 Gy1�x � yÿ1

2 Gy2 and there-

fore y1xyÿ1
2 2 NGL�n;Q��G�. A second possibility to ®nd

NGL�n;Q��G� is to compute the abstract automorphism group

Aut�G� of G and to check which of the (®nitely many) auto-

morphisms are induced by conjugation with a rational matrix.

The so-obtained elements of NGL�n;Q��G� form a set of coset

representatives of CGL�n;Q��G� in NGL�n;Q��G�.

3.4. Enantiomorphism for geometric crystal classes

It is pointed out by Brown et al. (1978) that in dimension 4

all geometric classes which ful®l the necessary condition that

all arithmetic classes contained in them are enantiomorphic

turn out to be enantiomorphic themselves. In dimension 6, the

situation is precisely the opposite, namely none of the three

geometric classes that contain only enantiomorphic arithmetic

classes is enantiomorphic. The members of the three

geometric classes in question all have the property that their

rational representation is absolutely irreducible, hence the

rational centralizer consists only of scalar matrices. One of the

groups is isomorphic to C2 � S5 acting on a six-dimensional

hypercubic lattice, one is isomorphic to PSL�2; 7� and the third

is isomorphic to C2 � PSL�2; 7�. To split the geometric class

into arithmetic classes is easy in these cases, because up to

scalings by a rational constant there are only ®nitely many

G-invariant lattices. For the example G � C2 � S5 with G

given by

G :�

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

0BBBBBB@

1CCCCCCA;
0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 ÿ1 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0BBBBBB@

1CCCCCCA
* +

;

the lattice of G-invariant sublattices (up to scalings) is

displayed in Fig. 3.

The geometric class of G splits into three arithmetic classes,

represented by the action of G on the lattices L1, L2 and L3,

the arithmetic classes represented by the actions of G on L4,



L5 and L6 are found to be Z-equivalent to those on L1, L2 and

L3, respectively. If we denote the basis transformation matrix

from L1 to L4 by y and the action of G on L1 by G1, then the

action of G on L4 is given by G4 :� yG1yÿ1. Since G1 and G4

are found to be Z-equivalent, there is a matrix x 2 GL�6;Z�
such that G4 � xÿ1G1x, hence xy 2 NGL�6;Q��G1�. One ®nds

that det�xy� � ÿ125, thus the geometric class containing G is

not enantiomorphic although the arithmetic classes repre-

sented by the action of G on L1, L2 and L3, respectively, are

enantiomorphic.

4. Results

4.1. Review of results in dimensions up to 4

Although the results for dimensions up to 4 are already

summarized in Brown et al. (1978), we would like to redisplay

them, augmented with the new classi®cation level of harmonic

crystal classes and to add a few remarks. The rows in Table 1

give the numbers of equivalence classes on the different

classi®cation levels, the numbers of enantiomorphic pairs are

added in parentheses in the case where they are different from

0. The number of equivalence classes under orientation-

preserving transformations is thus obtained as the sum of the

two numbers given, e.g. there are 230 � 219� 11 proper

space-group types in dimension 3 and 271 � 227� 44 proper

geometric crystal classes in dimension 4.

Remarks on dimension 4:

(i) The number of enantiomorphic space-group types given

by Brown et al. (1978) has to be corrected from 112 to 111.

There, the space-group type 08=01=01=002 in the hexagonal

monoclinic crystal family VII is erroneously claimed to be

enantiomorphic. Consequently, there is no enantiomorphic

®xed-point-free space group in dimension 4. [The corrections

that have to be made to the tables in Brown et al. (1978) are

announced in NeubuÈ ser et al. (2002).]

(ii) All but six enantiomorphic space-group types have

enantiomorphic point groups. Two of these six classes lie in the

ditetragonal orthogonal crystal family XIV (space-group types

18=04=03=006 and 18=04=05=007) and four in the hyper-

cubic family XXIII (space-group types 32=10=02=004,

32=10=02=007, 32=12=02=002 and 32=12=02=004).

(iii) All but one enantiomorphic arithmetic classes lie in

enantiomorphic geometric classes. The only exception is the

class 29=03=03 in the diisohexagonal crystal family XXI, where

only one of the ®ve arithmetic classes in the geometric class is

enantiomorphic.

(iv) All geometric classes in which all arithmetic classes are

enantiomorphic are enantiomorphic themselves.

(v) The enantiomorphism of the six crystal families VIII,

IX, XII, XIII, XVIII and XX implies the enantiomorphism of

six of the seven enantiomorphic crystal systems and Bravais

systems, since these are already full crystal families. The

remaining enantiomorphic crystal and Bravais systems are due

to the enantiomorphic geometric class 21=04 in the dihex-

agonal orthogonal crystal family XVI, which splits into the two

arithmetic classes 21=04=01 and 21=04=02. The ®rst of these

arithmetic classes consists of Bravais groups whereas the

Bravais groups of groups in the second class lie in the arith-

metic class 23=11=01, which is not enantiomorphic.

(vi) Of the 710 arithmetic classes, 416 form a harmonic

crystal class on their own, 118 harmonic crystal classes consist

of two arithmetic classes, 10 harmonic crystal classes consist of

three arithmetic classes and 7 harmonic crystal classes consist

of four arithmetic classes.

4.2. Results in dimensions 5 and 6

Table 2 gives the numbers of equivalence classes on the

various classi®cation levels for dimensions 5 and 6. Again, the

numbers of enantiomorphic pairs are given in parentheses.

Remarks on dimension 5:

(i) The small number of enantiomorphic space-group types

comes as a surprise.

(ii) The only class of enantiomorphic ®xed-point-free space

groups is represented by a space group R�P; v� for which the

point group P lies in the crystal family of the direct product of

the cubic crystal family in dimension 3 and the rectangular

crystal family in dimension 2. The point group P of order 24 is
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Figure 3
Lattice of G-invariant sublattices.

Table 1
Summary of classi®cation results in dimensions up to 4.

Number of classes in dimension

Classi®cation level 1 2 3 4

Crystal families 1 4 6 23 (+6)
Bravais systems 1 4 7 33 (+7)
Crystal systems 1 4 7 33 (+7)
Bravais ¯ocks 1 5 14 64 (+10)
Geometric crystal classes 2 10 32 227 (+44)
Harmonic crystal classes 2 12 66 551 (+63)
Arithmetic crystal classes 2 13 73 710 (+70)
Space-group types 2 17 219 (+11) 4783 (+111)

Fixed-point-free space groups 1 2 10 (+3) 74
with trivial center 0 0 1 4
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isomorphic to S4 and belongs to the geometric class of a

subdirect product of �43m?m which, following the recom-

mendations of Janssen et al. (1999), has symbol �43m�m1m�.
The group P is given as P � hg; hi with

g :�

1 ÿ1 0 0 0

0 ÿ1 ÿ1 0 0

0 1 0 0 0

0 ÿ1 ÿ1 1 0

0 0 0 0 1

0BBBB@
1CCCCA; h :�

0 1 0 0 0

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 ÿ1

0BBBB@
1CCCCA;

the vector system v is given by the vectors

v�g� :� �0; 0; 0; 0; 2=3� and v�h� :� �0; 0; 1=2; 0; 0�.
(iii) As suspected in NeubuÈ ser et al. (1981), the distribution

of Bravais systems and crystal systems in the crystal families

becomes more complicated in higher dimensions. Only 13 of

the 32 crystal families contain a unique holohedry and

therefore consist of a single Bravais and a single-crystal

system, 16 of the families contain two holohedries and two

crystal systems and one family contains three holohedries and

three crystal systems. The remaining two crystal families

contain three holohedries and four crystal systems, and six

holohedries and seven crystal systems, respectively. Therefore,

these crystal families provide examples of crystal systems that

do not contain a holohedry and one of these is described in

detail in x4.3.

(iv) Only 2588 of the 6079 arithmetic classes form a

harmonic crystal class on their own, the number of arithmetic

classes in one harmonic crystal class goes up to 8.

Remarks on dimension 6:

(i) In contrast to the situation in dimension 4, there are very

few symmorphic groups amongst the enantiomorphic space-

group types. Only 110 of the 7052 enantiomorphic space-group

types have enantiomorphic point groups.

(ii) Although there are 30 enantiomorphic arithmetic

classes and 26 enantiomorphic harmonic crystal classes, there

are no enantiomorphic classes on coarser classi®cation levels.

Of the 26 enantiomorphic harmonic crystal classes, 22 consist

of a single arithmetic class and 4 consist of two arithmetic

classes.

(iii) There are three geometric classes in which all the

arithmetic classes are enantiomorphic. All three fail to be

enantiomorphic themselves. One of these cases has been

discussed in more detail in x3.4.

(iv) The distribution of Bravais systems and crystal systems

in the crystal families is even more complicated than in

dimension 5. Only 29 of the 91 crystal families contain a

unique holohedry, 28 crystal families contain two holohedries,

19 families contain three, 5 contain four, 5 contain ®ve, 3

contain six, 1 family contains seven and 1 crystal family

contains eight holohedries. There are 18 crystal families that

contain crystal systems without holohedries. 13 of them

contain one such crystal system, 1 of them contains two, 1

contains three, 2 contain four and 1 crystal family contains ®ve

different crystal systems without a holohedry. The number of

Bravais systems in a single crystal family runs up to 8, the

number of crystal systems even up to 11.

(v) Only 20850 of the 85311 arithmetic classes form a

harmonic crystal class on their own, the number of arithmetic

classes in one harmonic crystal class goes up to 30.

4.3. Crystal systems without holohedry

As mentioned earlier, the non-existence of crystal systems

without holohedries in dimensions up to four led to a de®ni-

tion of crystal systems that is based on a holohedry contained

in a crystal system. An example in seven-dimensional space

(due to C. R. Leedham-Green) where this de®nition fails is

discussed in NeubuÈ ser et al. (1981) and led to the adjusted

de®nition of crystal systems adopted here. As a byproduct of

the classi®cation of crystallographic groups in ®ve-dimen-

sional space, two examples for this situation were found which

are therefore the smallest ones. We will discuss one of these

here in some detail.

Let G be the group generated by the four matrices

1 ÿ1 0 0 0

0 ÿ1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0BBBBBB@

1CCCCCCA;
1 0 0 0 0

1 ÿ1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0BBBBBB@

1CCCCCCA;
1 0 0 0 0

0 1 0 0 0

0 0 ÿ1 0 0

0 0 0 ÿ1 0

0 0 0 0 1

0BBBBBB@

1CCCCCCA and

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 ÿ1

0BBBBBB@

1CCCCCCA;

then G � D6 � C2 � C2 lies in the arithmetic class with

symbol 6mm?2?mP5 [following the recommendations of

Janssen et al. (2002)]. The crystal family of G contains three

Bravais systems (consisting of two Bravais ¯ocks each) but

four crystal systems.

The arithmetic classes in the crystal family of G that are

relevant to explain the existence of a crystal system not

containing a holohedry are displayed in Fig. 4. Shown are the

arithmetic classes of those groups for which either the

Table 2
Summary of classi®cation results in dimensions 5 and 6.

Number of classes in dimension

Classi®cation level 5 6

Crystal families 32 91
Bravais systems 57 220
Crystal systems 59 251
Bravais ¯ocks 189 841
Geometric crystal classes 955 7104
Harmonic crystal classes 3990 41915 (+26)
Arithmetic crystal classes 6079 85311 (+30)
Space-group types 222018 (+79) 28927922 (+7052)

Fixed-point-free space groups 1060 (+1) 38746 (+218)
with trivial center 101 5004 (+18)



geometric class of the group or the geometric class of a

subgroup intersects all six Bravais ¯ocks in the crystal family.

The boxes in the ®gure represent the arithmetic classes,

boxes that are directly joined together horizontally represent

arithmetic classes in the same geometric class and the boxes

with thick boundaries are the Bravais classes. The six Bravais

¯ocks in the crystal family are thus represented by the Bravais

groups G34, G56, H1, H2, H 07 and H08. Two boxes are joined by

an edge if the class of lower order contains a maximal

subgroup of a group in the class of higher order. The indices

for the names of the groups are chosen such that they re¯ect

the inclusion relations. The Bravais ¯ocks can be read off the

diagram by following down the edges starting from a Bravais

group. For example, the Bravais ¯ock of G34 consists of the

arithmetic classes of G34, H3, H4, H03, H04, U3, U4, M3, M4, M03
and M04.

Since groups in one Bravais system intersect the same set of

geometric classes, one sees that the Bravais ¯ocks of G34 and

G56, those of H1 and H2 and those of H 07 and H 08 form the three

Bravais systems. On the other hand, the geometric class of G34

intersects the Bravais ¯ocks of G34 and G56, the geometric

class of H1 intersects the Bravais ¯ocks of G34, G56, H1 and H2

and the geometric class of H 08 intersects the Bravais ¯ocks of

G34, G56, H07 and H08. This shows that the geometric classes of

G34, H1 and H 08 form three different crystal systems. Finally,

the geometric classes of U1, M1 and M01 intersect all six Bravais

¯ocks and therefore lie in a crystal system that is different

from those containing the geometric classes of the Bravais

groups. In particular, the crystal system containing the

geometric classes of U1, M1 and M01 and indicated by the oval

frame in Fig. 4 does not contain a holohedry.

4.4. Asymptotic behaviour in higher dimensions

It is stated by Schwarzenberger (1980, p. 34) that typically

there are few very large arithmetic classes (in the sense of

containing many space-group types) together with a rather

large number of small arithmetic classes. In order to obtain an

idea of the number of space-group types in higher dimensions,

it may therefore be worthwhile to inspect arithmetic classes

that are known to be large and whose size can be explicitly

determined. One candidate already examined in Schwarzen-

berger (1980) is the group D of diagonal matrices of order 2n.

The normalizer N :� NGL�n;Z��D� of D in GL�n;Z� is the full

monomial group, i.e. the semidirect product D�jG of D with

the group G � Sn of permutation matrices. Since D acts

trivially on the vector systems V�D;Qn=Zn�, the space-group

types with point groups in the arithmetic class of D correspond

to the orbits of G on the vector systems. This action can be

described explicitly as the conjugation action of the permu-

tation matrices on the set

X :� fM 2 �Z=2Z�n�n j Mii � 0 for 1 � i � ng
of matrices over Z=2Z with zeros on the diagonal, since X
represents the 2n�nÿ1� elements of H1�D;Qn=Zn�. The ®xed-

point lemma by Burnside±Cauchy (see Burnside, 1955,

Section 145) states that the group order multiplied by the

number of orbits of a group action equals the sum over the

®xed points of each element, i.e.

orb�G� � 1

jGj
X
g2G

jFix�g�j;

where orb�G� denotes the number of orbits of G. The right-

hand side of this formula is dominated by the term 2n�nÿ1�=n!
contributed by the identity element and a closer analysis for

this special situation shows that

lim
n!1

orb�G� � n!

2n�nÿ1� � 1:

Thus, 2n�nÿ1�=n! is the asymptotic value for the number of

space-group types in the arithmetic class of the group of

diagonal matrices.

Some results that indicate that the arithmetic class of the

group of diagonal matrices contains a substantial (and possibly

growing) portion of all space-group types are displayed in

Table 3. The ®rst three rows of the table give the total number

of space-group types and the numbers of space-group types in

the two largest arithmetic classes. In dimensions 4 and 5, the

group of diagonal matrices lies in the second largest class, in

the other dimensions it lies in the largest class. The fourth row

gives the estimate for the number of space-group types in the

arithmetic class containing the group of diagonal matrices as

derived above from the Burnside±Cauchy lemma. The ®fth

row gives the portion of space-group types that is found in the

largest arithmetic class and the last row the ratio between the

estimated class size and the actual size of the largest class.

One may expect that the estimate for the largest class

becomes more and more accurate for higher dimensions. If

one now assumes that the portion of space-group types in the

largest arithmetic class is roughly the same for dimensions

differing only by 1, moving from dimension n to dimension

n� 1 gives an increase of space-group types by a factor

of �2�n�1�n=�n� 1�!� � �n!=2n�nÿ1�� � 22n=�n� 1�. Extrapolating

from the ®gures for dimensions 5 and 6, one would therefore
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Figure 4
Crystal system without holohedry.
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expect about 1:7� 1010 space-group types in dimension 7 and

3:5� 1013 space-group types in dimension 8.

Valuable remarks and suggestions by G. Nebe, A. Janner

and H. Wondratschek are warmly acknowledged.
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Space-group types 17 219 4783 222018 28927922
Largest arithmetic class 3 16 272 11456 1540944
Second largest arithmetic

class
2 16 218 9608 1432608

d2n�nÿ1�=n!e 2 11 171 8739 1491309
In largest arithmetic class 17.6% 7.3% 5.7% 5.2% 5.3%
Estimated/actual size 0.67 0.69 0.61 0.76 0.97


